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Abstract. The flow over shallow cavities is numerically investigated. The analysis is performed for both, laminar and turbulent 
regimes. Some interesting features, previously detected, are discussed on the physical basis. The results obtained demonstrate that 
the vorticity shed at the upstream corner and the stagnation region formed at the downstream vertical wall dictate the physical 
scenario in terms of flow topology inside the cavity for both turbulent and laminar regime. The heat transfer budget for the turbulent 
cavity revealed an interesting feature of the convection fluxes inside the cavity, e.g., a symmetric behaviour. The mathematical 
model corresponds to the incompressible, Reynolds-averaged, Navier-Stokes equations plus a two-equation k-e turbulence model. 
Two numerical schemes are adopted in the analysis. The SIMPLER method, based in finite volume formulation, is used in the 
laminar study. Otherwise, for turbulent analysis, a finite difference scheme that has recently been developed by the present authors 
was applied. 
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1. Introduction  
 

The flow over cavities is of great practical interest, being extensively studied with the aim of analyze solar energy 
collectors, combustion chambers and environmental problems. Previous work, by the present authors, revealed some 
interesting aspects about this kind of flow, i.e., the opposite behavior on the displacement of the vortices inside the 
cavity for laminar and turbulent regimes (Zdanski et al., 2003), and the role played by the turbulent diffusion upon heat 
transfer rate at the cavity floor (Zdanski et al., 2005). These features were not fully explored on its physical aspects. 
Thus, the main goal here is to discuss these issues in more detail. 

The flow inside cavities is characterized by the appearance of large re-circulation regions. The literature data 
available is mainly devoted to the analysis of deep cavities and there is little information about cavities of large aspect 
ratios, or shallow cavities. Sinha et al. (1982) have reported experimental results for deep cavities as well as for shallow 
ones. This particular work reveals some important aspects about flow topology inside shallow cavities, but only for the 
laminar case. Frigo et al. (2004) presents numerical results for transient flow in free cavities with aspect ratios 1 and 2. 
This work emphasizes the analysis of time evolution of streamlines and velocity profiles inside the cavity. For a more 
complete review about this topic the reader may access the works of Zdanski et al. (2003, 2005). 

The numerical analysis was performed with two distinct schemes, i.e., the SIMPLER algorithm (Patankar, 1980) 
and the one developed by the present authors (Zdanski et al., 2004). The SIMPLER method is completely standardized 
in the literature and the other scheme adopts central difference formulas to discretize both convective and diffusive 
terms in a collocated mesh. To control odd-even decoupling problem, artificial viscosity terms are added externally. 
The laminar flow simulations were obtained through the SIMPLER algorithm while all turbulent cases were simulated 
with our “in-house” code. Although not shown here some laminar cases were re-calculated with the new method and 
the results were very similar to the ones obtained by the classical Patankar’s algorithm. That is, all major flow 
characteristics were recovered, thus, ruling out the possibility that the numerical scheme is a determinant factor on the 
flow aspects discussed hereafter. Further, a careful mesh refinement study was performed yielding grid-independent 
results. The results obtained demonstrate that vorticity shed at the cavity corner has the major influence upon the 
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bubbles position inside the cavity. Another result, related to heat transfer budget, indicates a symmetric behavior on the 
convection fluxes inside the cavity. 

An important point that should be clear is that ours is essentially an engineering approach. Therefore, the interest 
lies on the steady mean flow. We are aware that the dynamics inside the cavity is extremely complicated, and that the 
instantaneous flow plays a very important role. But, the emphasis of this paper is on the engineering aspect of the 
problem.  
 
2. Theoretical formulation 
 
2.1. Governig equations 
 

The flow is modeled by the two-dimensional, Cartesian, incompressible, Reynolds-averaged, continuity, Navier-
Stokes, and energy equations. In the Einstein notation the equations can be written as 
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where the mean strain rate is given by 
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For modeling the turbulent flow, we have adopted the Boussinesq approximation, where the turbulent fluctuations 

are correlated to mean flow properties as 
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being Tµ  and Tκ  the turbulent eddy viscosity and turbulent thermal conductivity, respectively. For computation of 
turbulent viscosity it was adopted the standard κ-ε turbulence model (Launder and Spalding, 1974). For determination 
of the turbulent thermal conductivity we have adopted the definition of constant Prandtl turbulent number, i.e., 

90PrT .= . 
 
2.2. Numerical method 
 

The numerical scheme adopted for the laminar analysis was the SIMPLER algorithm (Patankar, 1980). Otherwise, 
for the turbulent studies, the method developed by the present authors (Zdanski et al., 2004) is employed. The 
SIMPLER scheme is completely standardized in literature, while the other scheme is a recent proposal. The novel 
method discretizes the equations in a collocated mesh with central difference formulas. Artificial smoothing terms are 
added to control the odd-even decoupling and non-linear instabilities. The equations, written in conservation law form, 
are solved implicitly. A Poisson equation for pressure is solved to assure free divergence for velocity field. Distinctly of 
traditional pressure-correction methods, the convergence of the present scheme is assured without resorting to any kind 
of relaxation parameters. For more details about the scheme the reader is addressed to reference Zdanski et al. (2004). 
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3. Results and discussions 
 
3.1 Problem statement and boundary conditions 
 

The shallow cavity with the main dimensions is depicted at fig. (1). Boundary conditions were enforced as follows: 
at the inlet plane distributions of velocity, temperature, turbulent kinetic energy and turbulent dissipation rate are 
specified. The parabolic condition was enforced for all variables at the exit section. At the upper boundary coupling 
with the free stream flow is used. At solid walls the condition of zero velocity was enforced and the shear stress and 
heat flux are obtained from the law of the wall (Mansour et al., 1983) together with the standard κ-ε model (Launder 
and Spalding, 1974). The values of pressure and turbulent kinetic energy at the wall are obtained by a zero-order 
extrapolation from the values at the first cell. 

 

 
 

Figure 1. Shallow cavity with the main dimensions.  
 

The codes used in the present analysis were extensively tested in previous works (Zdanski et al., 2003, 2004, 2005). 
Comparisons with experimental and theoretical literature data have ever been satisfactory. These facts corroborate for 
the credibility of the results presented herein. A typical computational mesh used in the cavity analysis presents points 
clustering close to solid walls and to the horizontal plane connecting the two corners. The first grid point is set at y+≈30 
(for turbulent flow), and the maximum stretching factor for the mesh was 9%. 
 
3.2 Displacement of the vortices inside the cavity 
 

It was discovered in the authors’ previous work (Zdanski et al., 2003) that the Reynolds number affects the bubbles 
position inside the cavity for the laminar and turbulent regime. In the laminar case, for lower velocities, we have the 
flow reattached at the cavity floor, and the two bubbles encapsulate for higher velocities (Zdanski et al., 2003). This is 
so because increasing Reynolds number causes the greater bubble displaces in the downstream direction (Zdanski et al., 
2003). Otherwise, for the turbulent regime, the opposite occurs, i.e., the bubbles are encapsulated for lower velocities 
and the flow reattaches at the cavity floor with higher velocities (Zdanski et al., 2003, 2005). Furthermore, for the 
turbulent flow the bubble center does not change the position with increasing Reynolds number (Zdanski et al., 2005). 
What is the reason for this fact? This paper aims at understanding better this physical scenario. 

The aspect ratios considered for the present analysis were equals to 8 for the turbulent case and 12 for the laminar 
flow. These values were chosen to ensure the formation of two vortexes inside the cavity. The variation of the Reynolds 
number, based upon the cavity depth Res, was a consequence of the variation of the entrance velocity. For the turbulent 
case, values of Uin equal to 5m/s, 8m/s, and 12m/s, corresponding to Res equal to 13285, 21255, and 31880, are 
simulated. For the laminar regime we have adopted Uin equal to 0.4 m/s, 0.8m/s, 1.2m/s, and 1.8m/s corresponding to 
Res=147, 294, 442 and 662, respectively. 
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In Table (1), it is represented the vorticity (evaluated as Uin/δ) for the velocities tested. This quantity was calculated 
at the cavity upstream corner, where the boundary layer separates. The first conclusion, ’the obvious one’ was that for 
higher velocities we have more vorticity being shed at the cavity corner. The most important conclusion can be drawn 
from figs. (2) and (3), where the pressure distribution along the cavity floor is represented. The values of pressure 
shown in these figures are dimensional, representing the differences between the pressure at a particular station along 
the cavity floor and the pressure at the inlet section. It can be realized that for the turbulent regime, increasing the 
Reynolds number will cause the pressure decreases at the greater bubble region (x/s < 4.0) and augments in the region 
near the downstream vertical face (x/s > 4.0). The physical scenario that explain this behavior is as follows: increasing 
Reynolds number will leads to higher vorticity (see Table (1)), thus lowering the pressure at the bubble center and, as a 
consequence, at the cavity floor (x/s < 4.0). Moreover, the pressure increase for x/s > 4 is linked to the flow stagnation 
that occurs at the downstream vertical face. Therefore, in the region x/s > 4, the higher vorticity effect is overwhelmed 
by the pressure rise due to flow stagnation. This pressure distribution can explain why, in the turbulent regime, the 
greater bubble does not change its position with increasing velocities. In effect, the net pressure force augments in 
downstream direction forcing the bubble against the upstream vertical cavity wall. Figure (3), representing the laminar 
case, show a rather distinct picture. Increasing the velocities (and consequently vorticity) will lead to a pressure 
decrease along the whole cavity floor. Therefore, the effect of vorticity is more important, overwhelming the pressure 
increasing caused by the stagnation region. Although the net pressure force increases, in the downstream direction, the 
gradient is much smaller than in turbulent case, permitting the greater bubble to move downstream (Zdanski et al., 
2003). The major conclusion is the following: for the turbulent regime the vorticity being shed at the cavity corner is 
higher but their influence is restricted to the greatest bubble region (x < 4), and the pressure gradient does not permit the 
greater bubble to change the position with increasing Reynolds number. However, for the laminar case, the vorticity 
increasing, which causes a pressure decrease, is felt along the entire cavity floor. Thus, the pressure driven force is 
lower and the greater bubble moves downstream with increasing velocities. 
 

Table (1) – Cavity corner vorticity as a function of Reynolds number, Res 
Res Vorticity  

(s-1) 
Res Vorticity  

(s-1) 
147 45.13 13285 1178.50 
294 93.35 21255 1867.92 
442 144.10 31883 2700.00 
662 229.12   

 
 
 

 
Figure 2. Pressure difference between the floor and the entrance section for cavity with (w/s) = 8 
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Figure 3. Pressure difference between the floor and the entrance section for cavity with (w/s) = 12 

 
 

Aiming at better understanding the phenomenon the non-dimensional vorticity is plotted in figs. (4) and (5), i.e., 
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The attention is focused at the cavity region. The fig. (4) presents results for a laminar simulation where Res = 442 
whereas fig. (5) represents the turbulent picture for Res = 21,255. Clearly, we can realize that for turbulent flow the 
vorticity diffusion processes is more intense. Otherwise, if one analyzes the region near the cavity floor the immediate 
conclusion is the following: for turbulent flow we have the maximum positive vorticity near upstream step (x/s < 2) 
whereas for laminar flow this maximum vorticity region extends basically for the whole cavity floor. This observation 
is in agreement with the pressure distributions presented in figs. (2) and (3). 
 

 
Figure 4. Vorticity distribution for laminar flow regime with (w/s) = 12. 
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Figure 5. Vorticity distribution for turbulent flow regime with (w/s) = 8. 

 
3.3 Heat transfer budget inside the cavity 
 

It was demonstrated by the authors (Zdanski et al., 2005) that heat flux at the cavity floor is related to turbulent 
diffusion near cavity floor. Aiming a better understand of the phenomenon, we present the heat transfer budget inside 
the cavity. The convection and diffusion terms of the energy equation are evaluated at control volumes taken along the 
cavity length, as shown in fig. (6). 
 

 
Figure 6. Control volume representation for heat transfer budget. 
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The results for the energy budget are presented in Figs. (7) and (8). These results correspond to a cavity of aspect 
ratio equal to eight. The entrance velocity is set to 8 m/s, corresponding to Res = 21,255. The temperature at the 
entrance section is uniform, Tin = 300 K. The same value was enforced at solid walls, except at the cavity floor, where 
Tw = 350 K. The control volumes adopted have a length ∆x and cover all the cavity height, i.e., from y = 0 until y = s 
(see fig. (6)). In this way we take into account the mean effect of convection and diffusion along the cavity height and 
its local variation along cavity length. 

Noticeable, the most interesting aspect that may be observed in fig. (7) is the symmetrical behavior for the 
convection fluxes along x and y directions. Besides, the convection terms have greater magnitude than the diffusion 
terms (see fig. (8)). In spite of this fact, the net contribution due to convection (summing up x and y fluxes) has the 
same order of magnitude than y-diffusion term. This is so because for a steady state problem without heat sources, the 
energy conservation principle states that net energy entering or leaving the control volume by convection must be equal 
its counterpart by diffusion. It interesting to note that in this case (cavity with aspect ratio 8) we have two bubbles 
encapsulated inside the cavity, i.e., the flow does not reattach at the cavity floor (Zdanski et al., 2003; 2005). Perhaps, 
this is the reason for the symmetrical behavior of convection fluxes in the energy budget. Furthermore, from Fig. (8), 
we realize that the y-diffusion term is more important than its counterpart in the x-direction. 
 

 
Figure 7. Net convection fluxes inside the turbulent cavity with aspect ratio 8. 

 

 
Figure 8. Net diffusion fluxes inside the turbulent cavity with aspect ratio 8. 
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4. Conclusions 
 

The results presented help to clarify some interesting aspects of the incompressible flow over shallow cavities. The 
vorticity shed at the upstream corner and the stagnation region formed at the downstream vertical face has a major 
influence on vortices position inside the cavity. For the turbulent regime, the effect of vorticity is less important than in 
the laminar case. This basically explains the opposite behavior of the bubbles inside the cavity as function of the 
Reynolds number. Furthermore, the energy budget inside the cavity shows an interesting aspect related with the net 
convection fluxes inside the cavity, i.e., the symmetrical behavior. 
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